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A Target-Driven Planning Approach for
Goal-Directed Dialog Systems

Jian Wang , Dongding Lin , and Wenjie Li

Abstract— Existing dialog systems mainly build social bonds
reactively with users for chitchat or assist users with specific
tasks. In this work, we push forward to a promising yet
under-explored proactive dialog paradigm called goal-directed
dialog systems, where the “goal” refers to achieving the rec-
ommendation for a predetermined target topic through social
conversations. We focus on how to make plans that naturally lead
users to achieve the goal through smooth topic transitions. To this
end, we propose a target-driven planning network (TPNet) to
drive the system to transit between different conversation stages.
Built upon the widely used transformer architecture, TPNet
frames the complicated planning process as a sequence generation
task, which plans a dialog path consisting of dialog actions
and topics. We then apply our TPNet with planned content to
guide dialog generation using various backbone models. Extensive
experiments show that our approach obtains the state-of-the-art
performance in automatic and human evaluations. The results
demonstrate that TPNet affects the improvement of goal-directed
dialog systems significantly.

Index Terms— Goal-directed dialog systems, dialog generation,
target-driven planning.

I. INTRODUCTION

DIALOGUE systems [1] are mainly developed for chat-
ting with users for entertainment, i.e., open-domain

dialogs [2], [3], or assisting users in accomplishing specific
tasks, i.e., task-oriented dialogs [4], [5]. A particular type
of task-oriented dialog system named recommendation dialog
system [6], [7] has gained growing research interest in recent
years. It reveals that recommendation-oriented tasks further
activate the application potential of dialog systems [8].

Most existing recommendation dialog systems [6], [7], [9],
[10] converse with users reactively. They mainly respond
to users’ utterances to better understand the expressed pref-
erences or requirements and then provide recommendations
accordingly. Such reactive dialog systems have their limitation
in reality since people may not have clear preferences for
unfamiliar new topics or items. With this in mind, we explore
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how to proactively recommend some target topics or items
that possibly attract users through sociable conversations.
Recently, the emergence of the DuRecDial [11] dataset has
shed light on this research direction. As shown in the example
of Fig. 1, suppose there is an explicit goal, i.e., to recommend
a target movie named “McDull, Prince de la Bun,” the
system (i.e., Bot) is required to proactively and naturally lead
the whole conversation (e.g., “greeting” → “ask user” →

“chat about the star” → “movie recommendation”) so as
to recommend the target movie when appropriate. For the
above process, the system needs to consider the user profile,
the domain knowledge graph, and the designated target topic
before generating each system utterance. Here, we take the
term “system utterance” rather than “response” used in a lot
of related work since the system needs to proactively lead the
conversation in most cases. Specifically, the user profile helps
the system take the initiative and warm up conversations since
it reveals the user’s attributes. The domain knowledge graph
has domain-specific topics and associated attributes, which are
crucial to enable smooth topic transitions (e.g., “Running Out
of Time” → “Andy Lau” → “McDull, Prince de la Bun”).

In this work, we move forward to goal-directed dialog sys-
tems, where the “goal” refers to achieving the recommendation
for a predetermined target topic through social conversations.
Given a target topic (e.g., a movie or a piece of music),
we require a dialog system to lead the conversation proactively
from the chitchat to achieving the goal. With this in mind, our
key research question is “How to make reasonable plans to
drive the conversation to achieve the goal step by step?.” Com-
pared to previous reactive recommendation dialog systems [6],
[7], [9], [10], our problem is more challenging because: 1) the
system should maintain an engaging conversation to attract the
user’s attention and naturally transit among relevant topics and
2) the system is required to arouse the user’s interest in the
target topic to be recommended rather than discovering user
preferences alone.

To address the above challenges, we propose a target-driven
planning network (TPNet) to guide a dialog system to generate
appropriate utterances in a pipeline manner. First, since the
system is grounded on complicated text input, we use different
encoders to learn representations of different types of texts.
We employ the widely used transformer [12] network to
represent the domain knowledge graph, where we devise
a target-aware graph attention transformer for knowledge
encoding. We adopt an end-to-end memory network [13] and
a pretrained language model (PLM) BERT [14] to encode
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Fig. 1. Illustrative example from the repurposed DuRecDial [11] dataset. The whole conversation is grounded on the user profile and domain knowledge
(displayed partially), and is directed by the target action and topic.

the user profile and the dialog history, respectively. We also
propose a simple yet effective updating mechanism to update
the user memory representation to cope with the user’s input
and feedback during the conversation. Second, we propose a
target-driven conversation planner to make reasonable plans,
which frames the planning process as a sequence generation
task. It aims to plan (generate) a dialog path that consists
of dialog topics and how the system delivers these topics
(i.e., dialog actions). The planner is built on top of the
transformer [12] decoder architecture, where we devise a novel
knowledge-target mutual attention mechanism and a set-search
decoding (SSD) strategy. In the end, we use the planned path to
help extract necessary knowledge and, meanwhile, to explicitly
guide the system to generate appropriate utterances.

Overall, our contributions are summarized in three folds.
1) We push forward from the reactive recommendation

dialog paradigm toward the promising goal-directed
dialog paradigm, where the “goal” refers to achieving
the recommendation for a predetermined target topic
through social conversations. The proposed paradigm is
under-explored to the best of our knowledge.

2) We propose a TPNet to plan a dialog path consisting of
dialog actions and topics, which helps the system lead
the conversation to reach the target topic. It guides the
system for utterance generation and achieving the goal
step by step.

3) Experiments show that our method obtains the state-
of-the-art results in both automatic and human evalua-
tions. Our results and analysis indicate that target-driven
planning is essential to improving goal-directed dialog
systems.

II. RELATED WORK

Our work is mainly related to target-guided dialog sys-
tems and recommendation-oriented dialog systems. We briefly
review related work and clarify key differences compared with
our work as follows.

A. Target-Guided Dialog

Target-guided dialog systems aim to proactively guide con-
versations by the given targets. Depending on the nature of
targets, existing works have mainly focused on using keywords
[15], [16], [17], and topics [18], [19] as the guided targets.
For keyword-guided dialogs, [15] introduced coarse-grained
keywords to control the intended content of the system
response in open-domain conversations. As a follow-up study,
[16] proposed a dynamic knowledge routing network (DKRN)
to drive a conversation toward the target keyword with a
discourse-level guiding strategy. Since commonsense knowl-
edge is crucial to human conversations, [17] leveraged external
commonsense knowledge graphs for keyword transition and
response retrieval using graph neural networks (GNNs). For
topic-guided dialogs, the DuConv [18] dataset is released for
exploring an entity over a factual knowledge graph as the
target topic to guide the conversation. It requires the system
to plan over the knowledge graph to lead the conversation
from an initial topic to the target topic. Another important
research line is how to learn dialog strategies to achieve the
target, including graph-grounded policies [20], [21], conver-
sational lines [22], and topic transitions [23]. For example,
[21] planned a high-level goal sequence with balance between
dialog coherence and topic consistency by traversing over
the knowledge graph. [24] presented a two-level policy using
hierarchical reinforcement learning (HRL) to guide response
generation.

Overall, the above studies mainly focus on open-domain
dialog systems, where the target is regarded as achieved when
either the human or the system mentions the target keyword
or similar topical words in an utterance. In contrast, our
work formulates a more challenging setting, i.e., achieving
the recommendation for a predetermined target topic through
social conversations. It requires the system to interact with the
user with more actions to achieve the goal, such as chitchat,
user exploration, topic elicitation, and recommendation.
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B. Recommendation-Oriented Dialog

A recommendation-oriented dialog system encourages nat-
ural interactions with a user and make recommendations
accordingly, which can be viewed as a special type of
task-oriented dialog system. Recommendation dialog sys-
tems may have various forms of conversations, such as
social chitchat, question answering, recommendation, and
so on. It was the emergence of multiple datasets that
helps push forward the research in this area, such as
GORECDIAL [7], TG-ReDial [19], INSPIRED [25], and
DuRecDial [11]. Regarding dialog generation approaches,
multi-goal driven conversation generation (MGCG) [11] and
knowledge-enhanced multi-subgoal driven recommender sys-
tem (KERS) [26] explored the transition policy from a non-
recommendation dialog to a recommendation-oriented one.
CR-Walker [9] performed tree-structured reasoning over
knowledge graphs, obtaining hierarchical dialog acts to guide
both item and response generations. More recently, [10] com-
bined the advantage of slot filling and language generation
[27]. Further explored knowledge-aware recommendation dia-
log systems. An attribute-guided framework [28] was proposed
to keep track of item attributes and provide a more engag-
ing chat experience. There is another similar research area
called conversational recommender systems (CRSs) [29], [30].
Previous studies [8], [31] pointed out that CRS effectively
handles the cold-start problem in recommender systems and
it can provide personalized recommendations through natural
language conversations. Compared with recommendation dia-
log systems, the main task of CRS lies in discovering user
preferences [32], [33], asking clarifying questions about item
attributes [34], [35], and searching for optimal candidate items
[36], [37], [38].

Nonetheless, most existing models converse with users
reactively, where they provide recommendations according
to the user’s expressed interests or requirements. However,
people may not have clear preferences for unfamiliar new
topics or items. There is still a lack of exploration to study
how to enable a dialog system to proactively recommend target
topics that possibly attract users. This work aims to explore
such a task and refer to it as the goal-directed dialog.

III. PRELIMINARIES

In this section, we mainly provide preliminaries to make this
article more understandable. The notations frequently used in
this article are listed in Table I. The problem formulation and
important sub-tasks are introduced as follows.

Suppose we have a goal-directed dialog corpus D =

{(Ui ,Ki ,Hi ,Pi )}
N
i=1, where N denotes the total number of

conversations. Ui = {ui, j }
NU
j=1 is a user profile with each entry

ui, j in form of a ⟨key, value⟩ pair, Ki = {ki, j }
NK
j=1 denotes a set

of domain knowledge facts relevant to i th conversation with
each element ki, j in form of a ⟨subject, relation, object⟩ triple,
Hi = {(X i,t , Yi,t )}

T
t=1 denotes conversation content with a total

number of T turns, Pi = {(ai,l , zi,l)}
L
l=1 denotes a sequence

of annotated plans, and each plan specifies a dialog action
ai,l and a dialog topic zi,l . Here, the dialog topics are mainly
constructed upon the domain knowledge Ki . Each action-topic

TABLE I
LIST OF FREQUENTLY USED NOTATIONS

pair may affect multiple conversation turns. L denotes the
number of distinct action-topic pairs.

Given a target consisting of a target action aT ′ and a target
topic zT ′ , a user profile U ′, a set of relevant domain knowledge
K′, and a dialog history H′, our goal is to generate coherent
utterances to engage the user in the conversation so as to
recommend the designated target topic when appropriate. Due
to the complexity, the problem can be decomposed into three
sub-tasks: 1) action planning, i.e., plan actions to determine
where the conversation should go to lead the conversation
proactively; 2) topic planning, i.e., plan appropriate topics to
move forward to the target topic; and 3) dialog generation,
i.e., generate a proper system utterance to achieve the planned
action and topic at each turn.

IV. TARGET-DRIVEN PLANNING NETWORK

To proactively lead the conversation to achieve the goal,
we propose a TPNet to guide dialog generation in a
pipeline manner, with the overview shown in Fig. 2. This
section mainly describes the details of the TPNet, while
the planning-enhanced dialog generation will be described
in Section V. As shown in Fig. 2, our TPNet first employs
different encoders to learn representations of different types of
input texts, where the target-aware graph attention transformer
and the user memory network are two key components. Then
we propose a target-driven conversation planner to make
reasonable plans, which frames the planning process as a
sequence generation task. It aims to plan (generate) a dialog
path consisting of dialog actions and topics.

A. Target-Aware Graph Attention Transformer

The domain knowledge is organized in a graph structure,
while some nodes (i.e., subject or object) of this graph may
contain long texts (e.g., topic-associated attributes). To effi-
ciently represent the given domain knowledge K′, we employ
transformer [12] as the basic encoder, upon which additional
encoding strategies are incorporated. Inspired by [39] and
[40], we convert knowledge triples of the graph into unique
relation-entity pairs instead of directly concatenating those
triples to encode domain knowledge efficiently. As shown in
Fig. 3, ⟨“voice cast,” “Andy Lau”⟩ and ⟨“type,” “Animation”⟩
are two different pairs of attributes of the same topic “McDull,
Prince de la Bun.” We use two new tokens Entity and
Relation (Rel.) to differentiate between nodes and rela-
tions in the segment layer. We then use a special token [T]
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Fig. 2. Overview of our method, where the TPNet (top) and dialog generation (down) are trained in a pipeline manner.

Fig. 3. Illustration of our encoding strategy for the target-aware graph attention transformer.

to denote a topic-centric (e.g., “McDull, Prince de la Bun”)
sub-graph in both the token layer and the segment layer. More
importantly, the target topic itself is an entity node on the
domain knowledge graph, which is of vital importance in our
planning during the entire conversation. We attempt to encode
such target-aware graph information to facilitate our planning.
To this end, we add a new hop layer (see Fig. 3) into input
embeddings to represent the number of hops from the target
topic node to the current node or edge (relation) over the graph.
We let the hops of the target topic tokens be 1, and the hops of
the adjacent edge tokens and node tokens are computed by a
simple breadth-first search (BFS). The embeddings of the hop
layer are randomly initialized. The embeddings of the token,
segment, and position layers can be initialized from PLMs,
e.g., BERT [14]. After encoding, the final domain knowledge
representation is denoted as K = (k1, k2, . . . , kl), where l is
the length of the domain knowledge.

B. User Memory Network

As shown in Fig. 2, to model user attributes and preferences,
we adopt an end-to-end memory network (MemNN) [13] to
encode the user profile U ′, which is represented as a set of
trainable embedding matrices U′

= (U1, U2, . . . , UK ), where
Uk

= (uk
1, uk

2, . . . , uk
m), k ∈ [1, K ] and K is the number of

memory hops, m is the length of the user profile. This MemNN
loops over K hops with adjacent weighted tying to obtain
the memories of U ′, following previous studies [4], [41] that
employ memory networks in dialog systems.

In course of the conversation, it is necessary to cope with the
user’s immediate feedback to track whether the user follows
the system’s plan. Especially, the system needs to make the
conversation engaging first when the user deviates from the
system’s plan. The system must balance the goal and the user’s
feedback or expressed preference so that it can lead the
conversation to reach the target topic. To this end, we use the
dialog history to update user preferences by capturing relevant
feedback from user utterances. First, we employ a BERT [14]
encoder to encode the given dialog history H′, obtaining its
token-level hidden representation H = (h1, h2, . . . , hn), where
n is the length of the dialog history. Then, we adopt the user
memory embeddings Uk as the query to attend to the dialog
history content H, followed by an add operation to update the
user memory representation. Similar to the multihop attention
mechanism of the vanilla MemNN, here the user memory is
also updated with K -hop iterations. The above computation is
given by the following equation:

Pk
= softmax(Uk(HT)) (1)

Ok
= PkH (2)

Uk+1
= Uk

+ Ok (3)

where k ∈ [1, K ]. We regard the memory representation at the
last hop as the updated user memory representation, denoted
as U. Both H and U are then passed to the target-driven
conversation planner for planning.
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Fig. 4. Overview of the target-driven conversation planner.

C. Target-Driven Conversation Planner

Our target-driven conversation planner aims to plan a path
consisting of dialog actions and topics in a generation-based
manner. As a complete path to achieve the goal, both the
target action aT ′ and the target topic zT ′ should be bounded at
the end of the path to be planned. We expect that aT ′ and
zT ′ can drive the conversation planner to generate a more
reasonable path. Intuitively, we let the conversation planner
generate the path from the target turn of the conversation to
the present turn (see Fig. 2), which is of benefit to leverage
more target-side information. With such intuition, we build
our target-driven conversation planner based on the trans-
former [12] decoder architecture, which is shown in Fig. 4.
It takes the tokens of the target action and the target topic
as input and then generates a path sequence token by token,
i.e., “[A]a1a2, . . . , [T]t1t2, . . . , [EOS].” Here, [A] is a special
token to separate an action, [T] is a special token to separate a
topic shared with our target-aware graph attention transformer
encoder, and [EOS] denotes the end of the path sequence.

To train the conversation planner, we put the tokens of the
target action and the target topic ahead of the path sequence as
input (see Fig. 4) to let the planner condition on the target-side
information during all generation steps. The path sequence is
first passed to an embedding layer, in particular, the embedding
representation of the target tokens is denoted as T. Then the
shifted token-level embedding representation of the plan path
is used as the query, which is passed to three masked multihead
attention layers followed by add and normalization layers.
So far, we obtain the query representations Pk , Pu , and Ph ,
which are used to attend to K, U, and H, respectively.

Considering that the planned topics are mainly from the
domain knowledge, and the target topic is essential to drive
the entire conversation, we propose a knowledge-target mutual
attention module (see Fig. 4). We use the encoded knowledge
representation K and the planner’s target representation T to

calculate a relevance score via the scaled dot-product [12], the
average of which can be viewed as a weight that the target
influences the reasoning over the domain knowledge graph

Kweight = MeanPooling
(

KTT
√

d

)
. (4)

When using Pk to attend to K, the computation can be further
given by the following equation:

Ak = softmax
(

PkKT
√

d
∗ Kweight

)
K (5)

where Ak is the attended representation, d is the hidden size.
At the same time, it is also important to consider the user
preferences and the conversation progress (i.e., dialog context)
during planning. Therefore, we use query representations Pu

and Ph to attend to U and H, named “user preference cross
attention” and “dialog context cross attention,” respectively.
Both attentions are computed as follows:

Au = softmax
(

PuUT
√

d

)
U (6)

Ah = softmax
(

PhHT
√

d

)
H. (7)

To leverage different parts of the attended results strategi-
cally, we add an information fusion layer through gate control,
which is formulated as follows:

A1 = β · Au + (1 − β) · Ah (8)
β = sigmoid(W1[Au; Ah] + b1) (9)
A = γ · Ak + (1 − γ ) · A1 (10)
γ = sigmoid(W2[Ak; A1] + b2) (11)

where W1, W2 ∈ R2d are trainable weights, b1, b2 ∈ R
are trainable biases. Here, A denotes the fused attended
representation, which is then passed to a feed forward network
followed by add and layer normalization. In general, such an
architecture can be stacked to L layers for better planning
capabilities [42], where L a hyperparameter.

D. Training and Inference

During training, we train our TPNet using the following
cross-entropy loss:

LCE(θ) = −

N∑
i=1

p(y(i)) log pθ (ŷ(i)
|k(i), u(i), h(i)) (12)

where p(y(i)) is the distribution of the ground-truth plan path,
while pθ (ŷ(i)

|k(i), u(i), h(i)) is the distribution of the planner’s
output plan path conditioned on the inputs introduced before,
θ denotes all trainable parameters.

For inference, we employ greedy search decoding to gen-
erate plan paths token by token. Additionally, we propose a
simple SSD strategy (see Fig. 5) to facilitate to generate valid
actions and topics. Suppose there is an action set containing
all dialog actions in the dataset. At each step, the planner will
first perform a prefix-based string search in the action set.
Once a unique dialog action in the action set starts with the
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Fig. 5. Illustration of SSD.

decoded span, we will directly copy it without decoding for
the following action tokens. A similar way is performed when
decoding for topics, with the key difference that the planner
will search in the topic set that contains all topics within the
grounded domain knowledge graph.

V. PLANNING-ENHANCED DIALOG GENERATION

As shown in Fig. 2, our TPNet and dialog generation are
trained in a pipeline manner, where the generated plan paths
aim at guiding the system to generate more reasonable utter-
ances. Since each planned path is in the “target-to-present”
order, we take the last action at and the last topic zt in a
path as the guiding prompt. Here, zt is further taken as the
center topic to extract the corresponding triples (i.e., topics
and topic-centric attributes) within one hop from the domain
knowledge graph, denoted as Kt . The Kt is expected to provide
necessary knowledge beneficial to dialog generation. Note
that we assume no domain knowledge is required when zt

is “NULL,” i.e., at is “chit-chat.” Accordingly, we set the
extracted knowledge Kt as empty if this is the case.

Motivated by previous work employing prompt-based learn-
ing for dialog systems [43], [44], we adopt an important
type of task-specific prompt named natural language prompt
for our planning-enhanced dialog generation. In this work,
we define our prompts as follows:

GA = “Next action is:”
GT = “Next topic is:”
GK = “Relevant knowledge include:”.

Finally, the concatenated text of the given dialog history H′,
the guiding prompts, and corresponding values are concate-
nated as the input for dialog generation, denoted as follows:

X = [H′
; GA; at ; GT ; zt ; GK ; Kt ]

where “;” denotes the concatenate operation. We then leverage
various PLMs as backbone models to generate system utter-
ances. We will describe the backbone models used for our
experiments in Section VI-B.

VI. EXPERIMENTAL SETUP

A. Datasets

We conduct experiments using the DuRecDial [11] and
DuRecDial 2.0 [45] datasets, which are suitable for evaluating
goal-directed dialog systems to the best of our knowledge. The
system in the two datasets often leads conversations proac-
tively instead of passively responding to users, with various

TABLE II
STATISTICS OF THE SYSTEM’S DIALOG ACTIONS

interactive actions such as chitchat, question answering, and
recommendation. We first briefly introduce the two datasets
and then describe how to repurpose the datasets.

The original DuRecDial [11] and DuRecDial 2.0 [45]
datasets are collected from crowdsourced human-to-human
conversations. One person is defined as the seeker (the user’s
role) and the other as the recommender (the system’s role) in a
conversation. The recommender is required to proactively lead
the conversation and make recommendations by introducing
new topics. Each seeker is equipped with a user profile, which
contains user attributes (e.g., name, age range) and his or
her past preference information. All user attributes in their
profiles are randomly chosen from specific candidate templates
to preserve privacy. To achieve smooth conversations with
the seeker, the recommender has a domain knowledge graph
consisting of domain-specific topics (e.g., movies, music, and
food) with related attributes. More importantly, a specific
dialog action-topic pair is annotated with respect to the rec-
ommender at each turn of the conversation. A specific amount
of domain knowledge relevant to each topic that appeared
in the conversation is grounded in each conversation. The
DuRecDial dataset is in Chinese and contains about 10 k
multiturn conversations. The DuRecDial 2.0 dataset has about
8.2 k bilingual multiturn conversations, where we adopt the
English version for experiments.

Since no explicit targets (i.e., target actions and topics)
are annotated in the original datasets, we repurpose the two
datasets through automatic target construction. We regard the
topic the user has accepted at the end of each conversation as
the target topic and treat the system’s corresponding action as
the target action. Each target topic is guaranteed to appear
in the domain knowledge grounded on each conversation.
We filter out those conversations without introducing any
recommendation topics. For our TPNet training, we follow the
“target-to-present” order to construct each golden plan path,
which consists of a sequence of distinct action-topic pairs from
the target turn of the conversation to the present turn. We use
two special tokens [A] and [T] to separate an action and a
topic in the constructed plan path, respectively. In total, the
number of topics in the DuRecDial and DuRecDial 2.0 is
678 (including a NULL topic) and 628 (including a NULL
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TABLE III
STATISTICS OF THE PROCESSED DATASETS, WHERE “CONV.” DENOTES

“CONVERSATION,” “UTTER.” DENOTES “UTTERANCE”

topic), respectively. The system’s dialog actions across the
two datasets are almost identical, with the statistics reported
in Table II. On average, each conversation has 4.5 different
“action and topic” transitions from the start to the target.
Following the splitting criterion in [11], our processed datasets
are split into train/dev/test sets, with the statistics shown in
Table III.

B. Baseline Methods

To validate the performance of our method on the end task,
we first compare it with several competitive models for general
dialog generation.

1) Transformer [12]: It is an encoder–decoder model
widely used for text generation. We use OpenNMT’s
[46] implementation with its suggested parameters for
training.

2) DialoGPT [2]: It is an autoregressive generation model
pretrained using large-scale English dialog corpora.
We employ the CDial-GPT [47] for fine-tuning our
dataset in Chinese.

3) BART [48]: It is an encoder–decoder pretrained model
with denoising for natural language generation.

4) GPT-2 [49]: It is a pretrained autoregressive generation
model for language generation. We use the GPT2-base
version and fine-tune it for dialog generation.

Note that for a fair comparison, the above models concatenate
all given input texts as the model input and generate system
utterances directly. To explore to what extent our TPNet affects
dialog generation, we also employ the above models as our
backbone models, then follow the description in Section V to
generate utterances.

We also compare our planning-enhanced method with the
following the state-of-the-art recommendation-oriented dialog
generation models, where they follow a predict-then-generate
paradigm.

1) MGCG_G [11]: It employs the next predicted dialog
action and topic to guide system utterance generation.
Following our problem setting, we rerun the released
code1 on the repurposed datasets.

2) KERS [26]: It has a knowledge-enhanced mechanism for
recommendation dialog generation. Similarly, we rerun
the released code2 on the repurposed datasets.

1https://github.com/PaddlePaddle/Research/tree/master/NLP/ACL2020-
DuRecDial

2https://github.com/z562/KERS

To further explore the effect of planning for goal-directed
dialog systems, we compare our TPNet with the following
planning methods.

1) MGCG [11]: It employs a convolutional neural network
[50] to perform multitask predictions for the next dialog
action and topic. However, it assumes that ground-truth
historical dialog actions and topics are known for a
system. In our problem formulation, only the target
(i.e., a target action paired with a target topic) is
provided. The system needs to plan all interim dialog
actions and topics to achieve the goal. For a fair compar-
ison, we take the same input as our problem formulation
to predict the next dialog action and topic for MGCG.

2) KERS [26]: It aims to generate the next dialog action
and topic based on a transformer [12] network. Similarly,
we take the same input as our problem formulation for
KERS.

3) BERT [14]: Based on the intuition of multitask predic-
tions, we add two fully connected layers upon BERT to
predict the system’s next dialog action and topic jointly.
We adopt the BERT-base version model for fine-tuning.

4) GPT-2 [49]: Apart from predictions, planning can also
be performed in a generation manner. We directly gen-
erate the system’s next dialog action and topic token by
token by fine-tuning the pretrained GPT-2 base version
model.

For all involved PLMs, we adopt the pretrained models
released in the Huggingface [51] library for experiments.

C. Evaluation Metrics

1) Automatic Evaluation: Following many previous studies
in dialog generation, we adopt widely used metrics includ-
ing perplexity (PPL), word-level F1, BLEU [52], distinct
(DIST) [53], and knowledge F1 (Know. F1) [11]. In detail,
the PPL and DIST measure the fluency and the diversity
of generated system utterances, respectively. The F1 score
estimates the precision and recall of the generated utterance
at the word level. The BLEU score calculates n-gram over-
laps between generated and gold utterances. The Know. F1
evaluates the performance of generating correct knowledge
(e.g., topics, attributes) from the domain knowledge triples.
However, no knowledge is labeled for gold system utterances
in original datasets. We first conduct strict string matching
to search for the entities from the domain knowledge that
also appear in each gold system utterance as the knowledge
label. Some knowledge entries (object in the triple ⟨subject,
relation, object⟩) are in the form of long texts (e.g., topic-
associated attributes), and they are paraphrased during conver-
sations. We thereby compute word-based recall scores between
knowledge entries and gold system utterances. We take the
knowledge entries whose recall scores exceed the threshold
of 0.55 as the pseudo label. For knowledge F1 evaluation,
we take the same threshold (i.e., 0.55) to examine whether a
knowledge entry is hit in the generated utterances.

For conversation planning, we adopt accuracy (Acc.) to
evaluate the predicted action or topic for prediction-based
models, following [11]. For generation-based models, we take
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TABLE IV
RESULTS OF DIALOG GENERATION ON DURECDIAL. * DENOTES SIGNIFICANT IMPROVEMENT OVER THE BACKBONE MODEL (t -TEST, p < 0.05)

the generated action or topic at the evaluating turn and calcu-
late accuracy by an exact match for a fair comparison. Due
to the nature of conversations, multiple temporary planning
strategies might be reasonable before completing the goal.
Following [54], we also adopt bigram accuracy (Bi. Acc.)
for evaluation. It expands labels by counting the system’s gold
actions (or topics) within the previous turn and the subsequent
turn.

2) Human Evaluation: Similar to [11], we conduct human
evaluation from both turn-level and conversation-level aspects.
During turn-level evaluation, we randomly select 100 samples
from test sets and ask each model to produce system utterances
according to the input. Three well-educated annotators are
required to mark scores for different models from appropri-
ateness and informativeness. The appropriateness measures if
a generated system utterance can complete the current plan
and respond to the context appropriately. The informativeness
measures if a model can fully use domain knowledge to
generate an informative utterance. For fairness, all model
names are masked to annotators during the evaluation process.

For conversation-level evaluation, we let each model interact
with our human annotators, which indicates that the model
will take its generated utterance in the previous turn as a
part of the dialog history in the current turn. To ensure
the evaluation covers a wide range of targets, we randomly
sample five different target actions from the test dataset, with
each action consisting of ten different target topics. In total,
we have 50 different dialog targets for evaluation. To examine
whether a model can lead the conversation naturally and
proactively to reach the designated target, we do not expose
the target action and topic to human annotators during human-
model conversations. Besides, human annotators are asked to
be consistent with the given user profile. All human-model
conversations are limited to no more than 12 turns. At the
end of each conversation, we expose the designated target to
human annotators and ask them to mark scores for different
models from the following perspectives: 1) proactivity, which
measures if a model can proactively lead new actions/topics
in the conversation; 2) coherence, which measures the overall
fluency and naturalness of the whole dialog generation; and
3) goal success, which estimates whether the designated target
is achieved.

For all the above metrics, human evaluation scores are
settled from {0, 1, 2}, where a higher score denotes better

performance. The averaged score of different human anno-
tators is reported as the evaluation result for each model.
The agreement among the annotators is measured by Fleiss’s
kappa [55].

D. Implementation Details

We implement our TPNet based on the Huggingface’s
transformers [51] codebase. We employ character-based tok-
enization for the Chinese DuRecDial dataset and the default
BERT tokenizer for the English DuRecDial 2.0 dataset. The
pretrained BERT-base model is used during encoding, with a
vocabulary size of 21 128 and a hidden size of 768. The user
memory network adopts the vocabulary shared by BERT and
randomly initializes the memory embeddings with the number
of memory hops K = 3. The target-driven conversation
planner is stacked into 12 layers with eight attention heads,
similarly using the vocabulary shared by BERT. All hidden
sizes are set to 768. We adopt the Adam [56] optimizer with an
initial learning rate of 2e-5. We train TPNet for ten epochs and
warm up over the first 3000 training steps with linear decay.
We select the best model based on the performance of the
validation set. For TPNet inference, we adopt greedy search
decoding with our SSD strategy, with a maximum decoding
length of 256. During planning-enhanced dialog generation,
we employ transformer, DialogGPT/CDial-GPT, BART, and
GPT-2 as our backbone models. Each backbone model adopts
the same parameter setting as that in baseline experiments.
During generation, the maximum decoding length is set to 80.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation Results of Dialog Generation

Our automatic evaluation results of dialog generation on the
two datasets are reported in Tables IV and V, respectively. The
best result in terms of the corresponding metric is highlighted
in boldface. We observe that the vanilla transformer performs
inferior compared with other models since it has neither
conversation planning nor pretraining. As pretrained mod-
els, CDialGPT/DialoGPT, BART, and GPT-2 achieve much
better performance over various metrics, which shows they
are powerful to generate fluent and diverse utterances. For
dialog models based on the “predict-then-generate” paradigm,
we observe that MGCG_G and KERS are able to achieve
better results than transformer and CDialGPT over multiple
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TABLE V
RESULTS OF DIALOG GENERATION ON DURECDIAL 2.0. * DENOTES SIGNIFICANT IMPROVEMENT OVER THE BACKBONE MODEL (t -TEST, p < 0.05)

metrics. In view of the fact that MGCG_G and KERS are
trained without using PLMs, their improvements are mainly
from the planning of the next dialog action and topic, which
guides the model to generate more informative and reasonable
utterances.

As shown in Table IV, we observe that all backbone
models achieve significant improvements with the benefit of
our TPNet. For example, transformer with TPNet obtains a
remarkably improved Know. F1 (from 17.73% to 24.39%).
Compared to the vanilla transformer, our TPNet provides
reasonable dialog actions and appropriate topics with the nec-
essary knowledge to guide the generation of system utterances.
Though BART and GPT-2 are powerful for dialog generation
over many metrics, they achieve much better performance with
the help of our TPNet, especially in terms of word-level F1 and
Know. F1. It demonstrates that our TPNet-enhanced method
effectively generates more appropriate utterances. We observe
a similar trend on the DuRecDial 2.0 dataset as shown in
Table V. We find that almost all models’ Know. F1 scores
are much lower than the results on the DuRecDial dataset.
Our analyses indicate that in the DuRecDial 2.0 dataset, the
topics and topic-related attributes in the grounded domain
knowledge for each conversation are much noisier, making it
more challenging to distinguish different topics and generate
appropriate knowledge-rich words accordingly.

B. Evaluation Results of Conversation Planning

To further validate the effect of conversation planning
for the formulated goal-directed dialog systems, we com-
pare TPNet with different conversation planning methods.
The experimental results on DuRecDial and DuRecDial
2.0 datasets are reported in Tables VI and VII, respectively.
We observe that it is more difficult for all baseline methods
to predict or generate dialog topics correctly than dialog
actions. The reason is that the number of topics is much
larger than the actions in the two datasets. As a generation
method, KERS achieves significantly higher topic accuracy
than MGCG. A similar trend is also observed between GPT-2
and BERT, as shown in Table VI. It indicates the effec-
tiveness of generation for conversation planning. According
to Table VII, it is more difficult for all models to achieve
high topic accuracy scores. Our analyses reveal that in the
DuRecDial 2.0 dataset, the topics and topic-related attributes

TABLE VI
RESULTS OF CONVERSATION PLANNING ON DURECDIAL

TABLE VII
RESULTS OF CONVERSATION PLANNING ON DURECDIAL 2.0

in the grounded domain knowledge for each conversation are
much noisier, making it challenging to plan appropriate topics
with smooth transitions.

Our TPNet achieves substantial improvements on all the
metrics compared to the baseline methods. For example,
TPNet improves the topic accuracy from 70%∼80% to over
90% on the DuRecDial dataset. Even though for the more
challenging DuRecDial 2.0 dataset, our TPNet still achieves
remarkable improvements in topic planning. Our TPNet gen-
erates a path consisting of dialog actions and topics in a
target-driven manner, which considers the essential role of
the designated target. It verifies that TPNet effectively makes
proper plans consisting of dialog actions and topics.

C. Ablation Study of TPNet

To verify the effectiveness of each module in TPNet,
we also conduct an ablation study. We focus on the following
proposed modules or mechanisms and set them for ablation
experiments accordingly: 1) without the hop encoding strat-
egy in target-aware graph attention transformer (w/o Hop-E);
2) without the user memory updating mechanism (w/o UMU);
3) without the knowledge-target mutual attention mechanism
(w/o K-T MA), which denotes we directly use the query repre-
sentation Pk to attend to the domain knowledge representation
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TABLE VIII
ABLATION STUDY RESULTS OF TPNET

K in a simple cross attention manner; and 4) without the SSD
strategy (w/o SSD). From the ablation study results shown
in Table VIII, we observe that each module or mechanism
contributes to planning better actions and topics. In particular,
the performance of TPNet w/o K-T MA deteriorates rapidly
in topic planning. It shows that our knowledge-target mutual
attention is essential since it explicitly leverages the influence
of the target information that drives the whole planning
process.

D. Analysis of Goal Success

For goal-directed dialog systems, it is essential to validate
a model of how well it achieves the expected goal, such as to
measure whether a model generates the target topic correctly
when appropriate. Due to the nature of conversations, different
models might arrive at the target topic with different turns.
To this end, we take each model’s generated utterances of
all turns during automatic evaluation on test sets for analysis.
We compute the ratio of generating the target topic correctly
without restricting how many turns a model consumes, and
define it as the goal success rate (Succ.). We define the ratio
of never generating the target topic successfully among all
turns in a conversation as the never success rate (Never).
Our evaluation results of goal success on the two datasets
are reported in Table IX. Among the baselines, MGCG_G
and KERS still struggle to achieve high Succ. scores although
they conduct dialog planning. It shows that their “predict-then-
generate” paradigm is not effective enough to achieve the goal,
mainly because the paradigm ignores the crucial role of target
actions and topics since it concerns more about predicting
the next dialog action and topic. In comparison, our TPNet
employs a target-driven manner to plan a path, which considers
the target action and topic during planning throughout the
conversation. Performance gains from our TPNet provide the
backbone dialog generation models with more appropriate
prompts, making them more likely to generate the target
topic when appropriate. As shown in Table IX, our methods
outperform all baseline models with significantly higher Succ.
scores and lower Never scores.

E. Human Evaluation Results

We select several representative models for human eval-
uation, including MGCG_G, CDial-GPT (w/ and w/o
TPNet), and GPT-2 (w/ and w/o TPNet). Our turn-level
and conversation-level evaluation results are shown in
Figs. 6 and 7, respectively. The Fleiss’s kappa scores are
mainly distributed in [0.4, 0.6], which denotes moderate

TABLE IX
EVALUATION RESULTS OF GOAL SUCCESS. SIGNIFICANT DIFFERENCES

OVER BASELINES ARE MARKED WITH * (t -TEST, p < 0.05)

Fig. 6. Turn-level human evaluation results. (a) Appropriateness. (b) Infor-
mativeness. κ denotes Fleiss’s kappa.

Fig. 7. Conversation-level human evaluation results. (a) Proactivity.
(b) Coherence. (c) Goal success. κ denotes Fleiss’s kappa.

interannotator agreement. We observe that from the turn-
level aspect, though almost all models obtain comparable
informativeness scores, they vary remarkably in terms of
appropriateness. It shows that with the guidance of TPNet,
both CDial-GPT and GPT-2 can generate more appropriate
system utterances in response to dialog context. According
to the conversation-level evaluation results shown in Fig. 7,
we find that our models with TPNet obtain significantly higher
coherence scores and goal success scores than the original
backbone models. It indicates that TPNet effectively enables
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Fig. 8. Generated cases from conversation-level human evaluation. The bot’s utterances are generated by (a) MGCG_G, (b) GPT-2, and (c) Ours.

dialog models to generate more coherent utterances. More
importantly, our TPNet-enhanced dialog generation method is
more likely to drive the conversation to reach the target topic
and then make successful recommendations.

F. Case Study and Visualization Analysis

To present the dialog generation quality of different models
under the goal-directed setting, we conduct some case studies.

Here, we designate the same target action and topic, and show
generated utterances by three different models (i.e., MGCG_G,
GPT-2, and GPT-2 w/TPNet) from conversation-level human
evaluation in Fig. 8. As shown in Fig. 8(a), we observe
that MGCG_G often fails to generate coherent utterances and
is incapable to maintain an engaging conversation with the
user. Though MGCG_G performs planning first, it fails to
predict a correct topic when necessary, causing the model
fails to achieve the goal (i.e., recommend the song “The Gift
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Fig. 9. Visualization of TPNet’s attention weights over the domain
knowledge.

of Happiness”) in the end. For the case shown in Fig. 8(b),
GPT-2 can generate more fluent and informative utterances
in general. However, it still fails to achieve the goal, which is
might because it struggles to know when to generate the target
action and topic. In comparison, the case shown in Fig. 8(c)
demonstrates that our TPNet can plan a path consisting of
reasonable dialog actions and topics (including the target
action and topic). With the guidance of our TPNet, GPT-2 is
able to generate more coherent utterances. More importantly,
our TPNet can guide GPT-2 to achieve the goal successfully
since TPNet generates the target topic “The Gift of Happiness”
when necessary.

We further visualize the attention distribution of TPNet for
the case in Fig. 8 to explain the planning process. We first
aggregate token-level attention weights at each turn into
node-level weights over the domain knowledge, followed by a
normalization operation. We draw attentions varying by dialog
turns, which are consistent with that in Fig. 8. The TPNet’s
attention distribution is visualized in Fig. 9. It shows that at
the 1-st turn, the model focuses more on the song “Do Not Be
Afraid” than the target topic “The Gift of Happiness” because
it needs to respond to the user’s query about this song. At the
2-nd turn, the model mainly attends to the topic “Jiong He”
so it generates a planned path containing “Jiong He” as the
next dialog topic. Subsequently, the model mainly attends to
the target topic “The Gift of Happiness.” In such cases, it is
time for the system to move forward toward recommending the
target topic. Therefore, GPT-2 with our TPNet can generate
reasonable utterances to complete this process (see Fig. 8).

VIII. CONCLUSION AND FUTURE WORK

In this work, we push forward from the reactive recom-
mendation dialog paradigm toward the promising goal-directed
dialog paradigm. We propose a TPNet to plan a dialog
path, which aims to lead a conversation with the user to
achieve the goal step by step. The planned path provides our
model with specific dialog actions and topics, and facilitates
a dialog model to generate proper utterances in a pipeline

manner. Experimental results and analyses demonstrate the
effectiveness of our method.

This work still has some limitations for further improve-
ment. First, our pipelined framework has error propagation,
which might be a typical issue of most existing pipelined
methods. We find that the performance of dialog generation
is prone to drop when our TPNet fails to plan the path
appropriately. We intend to alleviate this issue by introducing
some techniques in the cascaded generation, such as noisy
channel models [57], [58]. Second, our planning-enhanced
method still suffers from a significant gap in fully achieving
the goal. We leave this as our future work and will explore
controllable generation techniques to further enhance dialog
generation.
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