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Web Search

Problems?
• Search queries are often short, the underlying user intents are often ambiguous.
• It’s challenging for Web search engines to return the appropriate results that pertain to 

the users’ actual information needs.
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Web Search Clarification
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Web Search Clarification
Problem Formulation:

Let 𝑄 = {𝑞!, 𝑞", ⋯ , 𝑞#} be the set of user queries, for each query 𝑞$(1 ≤ 𝑖 ≤ 𝑛), let 
𝑆%! = {𝑠%!

! , 𝑠%!
" , ⋯ , 𝑠%!

&} denote top-𝑚 search engine result pages (SERP) in response to 𝑞$, 
where the content of each 𝑠%!

' (1 ≤ 𝑗 ≤ 𝑚) is the snippet of the Web page returned by 
the search engine. 

Given a user query 𝑞$ and SERP snippets 𝑆%! , the task of Web search clarification is to 
automatically ask a clarifying question 𝑐$ with the intention of clarifying the user’s 
ambiguous information need.
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Web Search Clarification
Challenges?
• Generative method. For sequence-to-sequence methods (Sutskever et al., 2014; 

Bahdanau et al., 2015) to generate clarifying questions directly, they can hardly well 
capture the intra-semantics of each SERP and the inter-patterns between different 
SERPs, which are crucial for what is to be clarified.

6



Web Search Clarification
Challenges?
• Generative method. For sequence-to-sequence methods (Sutskever et al., 2014; 

Bahdanau et al., 2015) to generate clarifying questions directly, they can hardly well 
capture the intra-semantics of each SERP and the inter-patterns between different 
SERPs, which are crucial for what is to be clarified.

• Retrieval method. The bottleneck is to select the most appropriate one clarifying 
question from a large pool of question candidates with high efficiency.
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Our Motivation
• Clarifying questions often follow a few types of templates according to 

their purposes like disambiguation, comparison, asking for preference, or 
asking for sub-topic information.
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Our Motivation
• Clarifying questions often follow a few types of templates according to 

their purposes like disambiguation, comparison, asking for preference, or 
asking for sub-topic information.

• Preliminary statistical analysis reveals that common question templates 
can match over 95% of the clarifying questions.
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Our Method
• A simple yet effective template-guided clarifying question (TG-ClariQ) 

generation model, which employs Transformer (Vaswani et al., 2017) to 
enable deep interactions between user queries and SERP contents.
• Jointly learning to select the question template from a list of template 

candidates and fill in the question slot from a slot vocabulary.
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Our Method
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Datasets
We use the MIMICS (Zamani et al., 2020) data collection.
• We extract <query, clarifying question> pairs, each pair is associated with 

at most top-10 SERP snippets returned by the Bing’s search API.
• Training/validation/testing: 38,508/1000/1000 samples
• We obtain 8 question templates in total, which cover all clarifying 

questions in the samples.
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Baseline Methods
• Clarifying question selection (CQS): 

Extract clarifying questions from a large pool of candidate questions

• Clarifying template selection (CTS):
Directly select clarifying question templates

• Clarifying question generation (CQG):
Generate clarifying questions in an end-to-end manner
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Experimental Results
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Discussions
• If there are two or more slots that need to be filled in a question 

template, our model can be extended by adding additional slot generation 
layers and designing extra strategies to determine the order of slot filling. 
(Due to the single slot nature of the dataset, we leave this as a direction 
for future investigation. )
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Discussions
• If there are two or more slots that need to be filled in a question 

template, our model can be extended by adding additional slot generation 
layers and designing extra strategies to determine the order of slot filling. 
(Due to the single slot nature of the dataset, we leave this as a direction 
for future investigation. )

• Asking clarifying questions is an essential step for Web search clarification. 
We intend to further explore how to generate the answer options that are 
paired with the clarifying questions.
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Conclusion
• We explore an interesting but under-explored task, which aims to 

automatically ask clarifying questions with the intention of clarifying the 
user’s ambiguous information needs in web search scenarios.

• We propose a simple yet effective model to solve potential challenges of 
this task, with the main idea of jointly learning to select the question 
template and fill in the question slot.

Our code is available at: https://github.com/iwangjian/TG-ClariQ

https://github.com/iwangjian/TG-ClariQ
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